Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Cheng Wang, Xiang-Shan
 Wang,* Zhao-Sen Zeng and Da-Qing Shi

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail:
xswang1974@yahoo.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.047$
$w R$ factor $=0.137$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 5-cyano-4-(2,3-dimethoxyphenyl)-2-methyl-6-oxopyridine-3-carboxylate

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$, was synthesized from 2,3dimethoxyphenylmethylidenemalononitrile and ethyl acetoacetate in the presence of triethylbenzylammonium chloride in an aqueous medium. The pyridone and benzene rings make a dihedral angle of $63.8(1)^{\circ}$. There are intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

It is known that many pyridine derivatives exhibit a wide spectrum of pharmacological activities and biological activities, such as inhibitory activity (Liu et al., 2002), antimicrobial activity (Aytemir et al., 2003) and anti-inflammatory activity (Ozturk et al., 2002). We report here the crystal structure of the title compound, (I). Its aqueous synthesis (see Experimental) was inspired by the work of Breslow \& Rideout (1980), who promoted the use of water as a solvent in organic chemistry.

(I)

The pyridone ring ($\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1)$ is essentially planar (Fig. 1), with a maximum deviation of 0.026 (1) \AA for C 2 . This ring forms a dihedral angle of $63.8(1)^{\circ}$ with the benzene ring (C11-C16). Molecules form centrosymmetric dimers by $\mathrm{N} 1-$ $\mathrm{H} 1 A \cdots \mathrm{O} 1(1-x, 3-y, 1-z)$ hydrogen bonds (Table 2), and they are further linked via $\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 1(x, y-1, z)$ interactions (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of 2,3-dimethoxyphenylmethylidenemalononitrile ($0.42 \mathrm{~g}, 2 \mathrm{mmol}$) and ethyl acetoacetate ($0.39 \mathrm{~g}, 3 \mathrm{mmol}$) in the presence of triethylbenzylammonium chloride (0.1 g) in water at 363 K for 8 h (yield 93%, mp. 513-515 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a DMF solution. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.89(t, J=7.2 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.68\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.00\left(q, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.77\left(d d, J=1.2 \mathrm{~Hz}, J^{\prime}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{ArH}), 7.04\left(d d, J=1.2 \mathrm{~Hz}, J^{\prime}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.14(d d, J=7.6 \mathrm{~Hz}$,

Received 5 September 2005 Accepted 12 September 2005 Online 17 September 2005

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A packing diagram of (I), viewed along c. Dashed lines indicate hydrogen bonds.
$\left.J^{\prime}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3052(\mathrm{ArH}), 2852(\mathrm{C}-\mathrm{H}), 2224$ $(\mathrm{CN}), 1722,1661(\mathrm{C}=\mathrm{O}), 1592,1470,1430$ (benzene ring).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=342.34$
Monoclinic, $P 2_{1} / c$
$a=15.2031$ (14) £
$b=7.5946$ (7) A
$c=15.1270$ (14) \AA
$\beta=100.143(2)^{\circ}$
$V=1719.3(3) \AA^{3}$
$Z=4$

$D_{x}=1.323 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 2339
reflections
$\theta=2.7-25.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.2 \times 0.1 \times 0.1 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
8803 measured reflections
3379 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.137$
$S=1.07$
3379 reflections
226 parameters
H -atom parameters constrained

> 2559 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=26.0^{\circ}$
> $h=-18 \rightarrow 18$
> $k=-8 \rightarrow 9$
> $l=-15 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0722 P)^{2}\right. \\
& +0.1609 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{N} 1$	$1.374(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.419(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.435(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.376(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.376(2)$	$\mathrm{C} 5-\mathrm{N} 1$	$1.356(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$114.33(15)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.53(16)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.70(15)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$118.67(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.42(14)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$126.15(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$3.4(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 3$	$-52.4(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-5.2(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11-\mathrm{C} 12$	$-65.9(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$2.8(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$-2.9(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$1.1(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$0.7(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.48	$3.263(1)$	141
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 1^{\mathrm{i}}$	0.86	1.92	$2.780(2)$	177

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+3,-z+1$.

The H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Natural Science Foun-
dation (no. 04KJB150139) of the Education Committee of Jiangsu Province for financial support.

References

Aytemir, M. D., Hider, R. C., Erol, D. D., Oezalp, M. \& Zkizoglu, M. (2003). Turkish J. Chem. 27, 445-452.
Breslow, R. \& Rideout, D. C. (1980). J. Am. Chem. Soc. 102, 7816-7817.

Bruker (1998). SMART. Version 5.059. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT (version 6.28A) and SHELXTL (version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Liu, Z. D., Kayyali, R., Hider, R. C., Porter, J. B. \& Theobald, A. E. (2002). J. Med. Chem. 45, 631-639.
Ozturk, G., Erol, D. D., Aytemir, M. D. \& Uzbay, T. (2002). Eur. J. Med. Chem. 37, 829-834.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

