ISSN 1600-5368

Yu-Cheng Wang, Xiang-Shan Wang,* Zhao-Sen Zeng and Da-Qing Shi

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: xswang1974@yahoo.com

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.002 Å R factor = 0.047 wR factor = 0.137 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 5-cyano-4-(2,3-dimethoxyphenyl)-2-methyl-6-oxopyridine-3-carboxylate

The title compound, $C_{18}H_{18}N_2O_5$, was synthesized from 2,3dimethoxyphenylmethylidenemalononitrile and ethyl acetoacetate in the presence of triethylbenzylammonium chloride in an aqueous medium. The pyridone and benzene rings make a dihedral angle of 63.8 (1)°. There are intermolecular C– $H \cdots O$ and N– $H \cdots O$ hydrogen bonds. Received 5 September 2005 Accepted 12 September 2005 Online 17 September 2005

Comment

It is known that many pyridine derivatives exhibit a wide spectrum of pharmacological activities and biological activities, such as inhibitory activity (Liu *et al.*, 2002), antimicrobial activity (Aytemir *et al.*, 2003) and anti-inflammatory activity (Ozturk *et al.*, 2002). We report here the crystal structure of the title compound, (I). Its aqueous synthesis (see *Experimental*) was inspired by the work of Breslow & Rideout (1980), who promoted the use of water as a solvent in organic chemistry.

The pyridone ring (C1-C5/N1) is essentially planar (Fig. 1), with a maximum deviation of 0.026 (1) Å for C2. This ring forms a dihedral angle of 63.8 (1)° with the benzene ring (C11-C16). Molecules form centrosymmetric dimers by N1-H1A···O1 (1 - x, 3 - y, 1 - z) hydrogen bonds (Table 2), and they are further linked *via* C16-H16A···O1 (x, y - 1, z) interactions (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of 2,3-dimethoxyphenylmethylidenemalononitrile (0.42 g, 2 mmol) and ethyl acetoacetate (0.39 g, 3 mmol) in the presence of triethylbenzylammonium chloride (0.1 g) in water at 363 K for 8 h (yield 93%, mp. 513–515 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a DMF solution. ¹H NMR (CDCl₃): 0.89 (*t*, *J* = 7.2 Hz, 3H, CH₃), 2.68 (*s*, 3H, CH₃), 3.86 (*s*, 3H, OCH₃), 3.92 (*s*, 3H, OCH₃), 4.00 (*q*, *J* = 7.2 Hz, 2H, CH₂), 6.77 (*dd*, *J* = 1.2 Hz, *J'* = 7.6 Hz, 1H, ArH), 7.04 (*dd*, *J* = 1.2 Hz, *J'* = 8.0 Hz, 1H, ArH), 6.14 (*dd*, *J* = 7.6 Hz,

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A packing diagram of (I), viewed along c. Dashed lines indicate hydrogen bonds.

J' = 8.0 Hz, 1H, ArH), IR (cm⁻¹): 3052 (ArH), 2852 (C-H), 2224 (CN), 1722, 1661 (C=O), 1592, 1470, 1430 (benzene ring).

Crystal data

$C_{18}H_{18}N_2O_5$	$D_x = 1.323 \text{ Mg m}^{-3}$
$M_r = 342.34$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2339
a = 15.2031 (14) Å	reflections
b = 7.5946 (7) Å	$\theta = 2.7 - 25.0^{\circ}$
c = 15.1270 (14) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 100.143 \ (2)^{\circ}$	T = 292 (2) K
V = 1719.3 (3) Å ³	Block, colorless
Z = 4	$0.2 \times 0.1 \times 0.1 \text{ mm}$

2559 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0722P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.1609P]

 $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int}=0.026$

 $\theta_{\rm max} = 26.0^\circ$

 $h = -18 \rightarrow 18$

 $l = -15 \rightarrow 18$

 $k = -8 \rightarrow 9$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 8803 measured reflections 3379 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.137$ S = 1.073379 reflections 226 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.374 (2)	C3-C4	1.419 (2)
C1-C2	1.435 (2)	C4-C5	1.376 (2)
C2-C3	1.376 (2)	C5-N1	1.356 (2)
N1-C1-C2	114.33 (15)	C5-C4-C3	119.53 (16)
C3-C2-C1	121.70 (15)	N1-C5-C4	118.67 (15)
C2-C3-C4	119.42 (14)	C5-N1-C1	126.15 (14)
N1-C1-C2-C3	3.4 (2)	C3-C4-C7-O3	-52.4(2)
C1-C2-C3-C4	-5.2(2)	C2-C3-C11-C12	-65.9(2)
C2-C3-C4-C5	2.8 (2)	C4-C5-N1-C1	-2.9(3)
C3-C4-C5-N1	1.1 (2)	C2-C1-N1-C5	0.7 (2)

lable 2			
Hydrogen-bond	geometry (Å, '	۶).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C16-H16A\cdotsO1^{i}$ $N1-H1A\cdotsO1^{ii}$	0.93	2.48	3.263 (1)	141
	0.86	1.92	2.780 (2)	177

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 3, -z + 1.

The H atoms were positioned geometrically and refined as riding, with C-H = 0.93–0.97 Å and N-H = 0.86 Å, and with $U_{iso}(H)$ = $1.2U_{eq}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Natural Science Foundation (no. 04KJB150139) of the Education Committee of Jiangsu Province for financial support.

References

Aytemir, M. D., Hider, R. C., Erol, D. D., Oezalp, M. & Zkizoglu, M. (2003). *Turkish J. Chem.* **27**, 445–452.

Breslow, R. & Rideout, D. C. (1980). J. Am. Chem. Soc. 102, 7816-7817.

- Bruker (1998). SMART. Version 5.059. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT (version 6.28A) and SHELXTL (version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, Z. D., Kayyali, R., Hider, R. C., Porter, J. B. & Theobald, A. E. (2002). J. Med. Chem. 45, 631–639.
- Ozturk, G., Erol, D. D., Aytemir, M. D. & Uzbay, T. (2002). Eur. J. Med. Chem. 37, 829–834.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.